13 research outputs found

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    Real time scheduling of batch operations

    No full text
    SIGLEAvailable from TIB Hannover: RO 9630(91007) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Progressive equilibration algorithms: the case of linear transaction costs

    No full text
    In this paper we consider the solution of large-scale market equilibrium problems with linear transaction costs which can be formulated as strictly convex quadratic programming problems, subject to supply and demand constraints. In particular, we introduce two new classes of progressive equilibration algorithms, which retain the simplicity of the original cyclic ones in that at each step either the supply or demand market equilibrium subproblem can be solved explicitly in closed form. However, rather than equilibrating the markets in cyclic manner, the next market to be equilibrated is selected in a more strategic fashion. We then provide qualitative results for the entire family of progressive equilibration algorithms, i.e., the rate of convergence and computational complexity. We discuss implementation issues and give computational results for large-scale examples in order to illustrate and give insights into the theoretical analysis. Furthermore, we show that one of the new classes of algorithms, the lsquogood-enoughrsquo one, is computationally the most efficient. Theoretical results are important in that the relative efficiency of different algorithms need no longer be language, machine, or programmer dependent. Instead, the theory can guide both practitioners and researchers in ensuring that their implementation of these algorithms is, indeed, good. Since an equivalent quadratic programming problem arises in a certain class of constrained matrix problems, our results can be applied there, as well. Finally, since more general asymmetric multicommodity market equilibrium problems can be solved as series of the type of problems considered here, the result$ are also applicable to such equilibrium problems
    corecore